Subdivision Yields Alexander Duality on Independence Complexes

نویسنده

  • Péter Csorba
چکیده

We study how the homotopy type of the independence complex of a graph changes if we subdivide edges. We show that the independence complex becomes the Alexander dual if we place one new vertex on each edge of a graph. If we place two new vertices on each edge then the independence complex is the wedge of two spheres. Placing three new vertices on an edge yields the suspension of the independence complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Independence Complexes and Edge Covering Complexes via Alexander Duality

The combinatorial Alexander dual of the independence complex Ind(G) and that of the edge covering complex EC(G) are shown to have isomorphic homology groups for each non-null graph G. This yields isomorphisms of homology groups of Ind(G) and EC(G) with homology dimensions being appropriately shifted and restricted. The results exhibits the complementary nature of homology groups of Ind(G) and E...

متن کامل

Alexander Duality for Monomial Ideals and Their Resolutions

Alexander duality has, in the past, made its way into commutative algebra through Stanley-Reisner rings of simplicial complexes. This has the disadvantage that one is limited to squarefree monomial ideals. The notion of Alexander duality is generalized here to arbitrary monomial ideals. It is shown how this duality is naturally expressed by Bass numbers, in their relations to the Betti numbers ...

متن کامل

Graph Mappings and Poincaré Duality

defined by the cap product with the fundamental class [M ] of M is an isomorphism of finitely generated abelian groups. This duality is manifest in many ways in geometry. Locally it corresponds to the duality of forms and currents in the theory of de Rham. It appears in Hodge theory via the *operator on harmonic forms. In Poincaré’s original work it can be described via barycentric subdivision ...

متن کامل

Dirac's theorem on chordal graphs and Alexander duality

By using Alexander duality on simplicial complexes we give a new and algebraic proof of Dirac’s theorem on chordal graphs.

متن کامل

Twisted Face-pairing 3-manifolds

This paper is an enriched version of our introductory paper on twisted face-pairing 3-manifolds. Just as every edge-pairing of a 2-dimensional disk yields a closed 2-manifold, so also every face-pairing of a faceted 3ball P yields a closed 3-dimensional pseudomanifold. In dimension 3, the pseudomanifold may suffer from the defect that it fails to be a true 3-manifold at some of its vertices. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2009